
RCP Scenarios

Marc Paterno
CD Special Assignments, FNAL

August 15, 2000

Abstract

The note describes scenarios related to the creation of RCP objects.
Its goal is to cover all applicable cases, and to serve as the primary design
document describing the methods by which RCP objects can be intro-
duced into programs. This document is a working document, intended for
the developers of the RCP package; it will often have incomplete sections.

This document is appropriate for RCP 0.4.

Contents

1 Introduction 3

2 RCP Database Objects 3

3 Searching for Scripts 4

4 Specifying parameter sets by RCPName 5

5 Scenarios 5
5.1 Given an RCPID . 5

5.1.1 Situation . 5
5.1.2 Result . 5

5.2 Given package and RCP names: no local scripts 6
5.2.1 Situation . 6
5.2.2 Result . 6

5.3 Given package and RCP names: local script, identical parameter
set in “official” database . 7
5.3.1 Situation . 7
5.3.2 Result . 7

5.4 Given package and RCP names: local script, no matching param-
eter set in any datbase, access to writable database 8
5.4.1 Situation . 8
5.4.2 Result . 8

1

5.5 Bootstrap scenario: populating the “official” database from a new
library release . 8
5.5.1 Situation . 8
5.5.2 Result . 8

5.6 Given package and object name, no script, no access to “official”
database; read access to “higgs” database 9
5.6.1 Situation . 9
5.6.2 Result . 9

5.7 Given package, object name, and version name; local script; same
parameter set in writeable database; this is a new version 9
5.7.1 Situation . 9
5.7.2 Result . 9

6 Random Questions I Can’t Yet Answer 10

2

1 Introduction

The note describes several scenarios related to the creation of RCP objects.
See the document Run Control Parameters at DØ (available in the docs
subdirectory of the rcp package) for a more complete overview of the system.
Here, we present brief overview.

In a program, a user gets an RCP object by extracting it from an RCPMan-
ager. This can be done either by specifying an RCPID (which one might have
obtained from an item in an event), or, more often, by specifying a package name
and an RCP name. These two items, supplemented by a software release version
name and a datbase name are sufficient to specify any parameter set that has
been released through the software release procedure. In the future, parameter
sets that have been entered into the database through the web interface may not
be part of any software release; if they are not, they would have no associated
software release version. They would still be tracked by their own version tag.

In the scenarios below, we refer to a parameter set that does not include
any other parameter sets as a simple parameter set. We refer to the human-
modifiable text file representation of a parameter set as a script. In a script, the
containment of one parameter set in another is specified by embedding, in which
the package name and RCP name indicating the parameter set to be included
are specified.

2 RCP Database Objects

An instance of RCPManager is connected, upon instantiation, with a specific
collection of RCP database objects (instances of concrete subclasses of Abs-
RCPDatabase). The specific classes, and also the specific database pieces,
connected to the RCPManager are determined by an environment variable
RCP DATABASE PATH. This variable must be set to a colon-delimited list describ-
ing each database piece, and the class to be used to communicate with that
database piece. For example, the string “official/FileSystemDB : Higgs/File-
SystemDB : JUser/FileSystemDB” indicates that three databases are to be
used:

1. the “official” RCP database,

2. the Higgs physics group database,

3. the JUser (personal) database. Only this database is writable.

All databases will be connected to using a connected to via a FileSystemDB
interface. In a future release, there will also be the option of using an Oracle
interface.

The RCPManager is told which experiment’s library release version it is to
work with via the environment variable SRT BASE RELEASE, which is the same
variable as used by SoftRelTools. This “version name” is used by the RCPMan-
ager to create an RCPName, as described in Section 5.2.

3

3 Searching for Scripts

A user may require the ability to override a parameter set stored in a database
with one of his own. We support this by providing for the existence of local
scripts. When a user requests a parameter set by giving a package name and an
RCP name, the system will first look for a script with the appropriate name in
the local filesystem. If one is found, this script will be used to create the RCP
object requested.

The search takes place in a directory tree rooted at the directory specified
by the environment variable RCP SCRIPT BASE. If this environment variable is
not defined, then the starting directory is the current working directory, as
determined by getcwd. The environment variable is expected to evaluate to a
directory name of an appropriate format for the environment in which the user
is running.

The search expects to see a specific directory structure; this structure is
defined to be one which conforms to the SRT standard code directory structure.

The directory structure (starting from the directory base) expected by the
FileFinder is shown in Figure 1. Given a base directory “base”, a package
name “p”, and an RCP name “r”, the FileFinder will look for a file named
base/p/rcp/r.rcp on Unix systems. On a Windows NT system, all the forward
slashes will be replaced with backslashes, in the standard fashion. In order to
support the Unix filesystem, neither the package name nor the RCP name may
have embedded spaces. In order to support the Windows NT filesystem, two
files in the same directory may not have filenames which differ only in case.
Script files which violate any of these requirements, or which are placed in a
different directory structure, will not be seen by the FileFinder, and will be
ignored during the search.

base
package1

rcp
rcpname1.rcp
rcpname2.rcp

package2
rcp

rcpname1.rcp
rcpname2.rcp

Figure 1: The directory structure expected by the RCP system.

4

4 Specifying parameter sets by RCPName

When a user specifies a required parameter set by giving both a package name
and object name, the RCP system must supply additional information to create
an RCPName. The additional information is the following:

1. A version; this is the release tag associated with the SRT library re-
lease which resulted in the addition of the parameter set to the “official”
database piece. For parameter sets in any other database piece, use of
this part of the name is left to the discretion of the manager(s) of that
database piece.

2. A database name; this is the name of the database in which the parameter
set resides.

5 Scenarios

In this section, we present several specific scenarios for the creation of RCP
objects. We organize them (approximately) in order of increasing complexity.
In each case, we give a snippet of code (a void function doStuff), which shows
how the scenario begins.

5.1 Given an RCPID

5.1.1 Situation

The user requests an RCP object by giving an RCPID to a local RCPManager.
The RCP object requested is found in one of the databases connected to the
RCPManager.

void doStuff(const edm::THandle<XChunk>& h) {
edm::RCPID id = h->getRCPID();
edm::RCPManager* mgr = edm::RCPManager::instance();
edm::RCP myrcp = r.extract(id);
// now do stuff with the RCP object

}

5.1.2 Result

First, the RCPManager is created, as described in Section 2. Since the request
is made by using an RCPID, there is no searching of the local filesystem for a
script.

The RCPManager queries each of its RCPDatabaseServices objects in or-
der, requesting an RCPValue object associated with the given RCPID. In turn,
each RCPDatabaseServices object queries its associated AbsRCPDatabase ob-
ject, requesting an RCPValue object associated with the given RCPID. The
RCPManager stops when the an RCPDatabaseServices returns an RCPValue.

5

The RCPManager then wraps the RCPValue in an RCP object, and returns
it to the user.

If the RCPManager had searched through its entire collection of RCPData-
baseServices objects, and none had responded positively to the request for an
object associated with the given RCPID, the RCPManager would throw an
XRCPNotFound exception.

5.2 Given package and RCP names: no local scripts

5.2.1 Situation

The user requests an RCP object by giving two strings. The first is the name of
a CVS package, and the second is the name of a parameter set associated with
that package. The additional bit of information required to uniquely identify the
required parameter set is the release version of the DØ library the user is using;
this is known by the RCPManager, and is determined at the time the RCP-
Manager is created, by reading the environment variable SRT BASE RELEASE.

void doStuff(const edm::THandle<XChunk>& h) {
edm::RCPID id = h->getRCPID();
edm::RCPManager* mgr = edm::RCPManager::instance();
edm::RCP myrcp = r.extract("cps_geometry",

"CpsChannelGeometry");
// now do stuff with the RCP object

}

No scripts are present in the local filesystem.

5.2.2 Result

The RCPManager builds an RCPName object from the given strings and the
string indicating the experiment’s software release version (its own data mem-
ber). The RCPManager then queries its FileFinder, to determine whether or
not a local script exists. The FileFinder indicates that none is found.1

The RCPManager then queries each of its RCPDatabaseServices objects in
order, requesting an RCPValue object associated with the given RCPName.
The RCPDatabaseServices returnsThe RCPManager stops when the an RCP-
DatabaseServices returns an RCPValue.

The RCPManager then wraps the RCPValue in an RCP object, and returns
it to the user.

If the RCPManager had searched through its entire collection of RCPData-
baseServices objects, and none had responded positively to the request for an
object associated with the given RCPName, the RCPManager would throw an
XRCPNotFound exception.

1See Section 3 for a description of the FileFinder class.

6

5.3 Given package and RCP names: local script, identical
parameter set in “official” database

5.3.1 Situation

The user requests an RCP object by giving two strings. The first is the name of
a CVS package, and the second is the name of a parameter set associated with
that package. See Section 5.2.1 for how the SRT BASE RELEASE environment
variable is used to complete the specification of the RCPName. The parameter
set specified in this file is identical to one found in the “official” database.
The RCP DATABASE PATH environment variable indicates that no writing to any
database should be attempted. The code in this case is identical to that in
Section 5.2.1.

A script is present in the local filesystem. The environment variable RCP -
SCRIPT BASE points to the directory mywork, which contains a directory cps ge-
ometry, which in turn conatins a directory rcp. In this directory is a file named
CpsChannelGeometry.rcp. The environment variable RCP DATABASE PATH is
set to look only in the “official” database.

5.3.2 Result

The RCPManager builds an RCPName object from the given strings and the
string indicating the SRT release version (its own data member). The RCP-
Manager then queries its FileFinder object, to determine whether or not a local
script exists. The FileFinder finds the script file, and gives it to the Parser.
The Parser creates an Script object, from which the RCPManager then creates
an incomplete RCPValue object. The RCPValueobject is incomplete because
it does not have an RCPID, and because it has an incomplete RCPName. The
RCPName is incomplete because it is missing its database name.

The RCPManager then queries each of its RCPDatabaseServices objects
in order, requesting an RCPValue object with a parameter set equal to the
given one. In turn, each RCPDatabaseServices object queries the RCPValue
object for its RCPHashKey ; it then queries its associated AbsRCPDatabase
object, requesting all RCPValue objects associated with the given RCPHash-
Key. The RCPManager stops when the an RCPDatabaseServices returns a
complete RCPValue.

The RCPManager then wraps the RCPValue in an RCP object, and returns
it to the user.

If the RCPManager had searched through its entire collection of RCPData-
baseServices objects, and none had responded positively to the request for an ob-
ject with a parameter set the same as that specified in the script, the RCPMan-
ager would throw an XRCPNotFound exception – because no writable database
was specified.

If the parameter set found in any of the readonly databases had no matching
name, then an exception would be thrown.

7

5.4 Given package and RCP names: local script, no
matching parameter set in any datbase, access to
writable database

5.4.1 Situation

Just like it says in the title.

5.4.2 Result

Find script. Make RCPValue, with no RCPID and incomplete RCPName; the
RCPName is missing a version and database name. Give RCPValue to RCP-
DatabaseServices. RCPDatabaseServices extracts RCPHashKey, and gets all
matching RCPValue objects from AbsRCPDatabase. Check each of these hits
for equality with given RCPValue; none match. RCPDatabaseServices then calls
put on its AbsRCPDatabase, giving it the RCPValue. AbsRCPDatabase then
issues a new unique RCPID, completes the RCPName by adding its database
name and a new unique version (must be unique within this database piece, for
this package name and object name). The version number could just be the
ordinal of the new parameter set within this package name/object name pair.
Completed RCPValue is then wrapped in RCP and returned to user.

If there were no access to a writable database, then an exception would be
thrown.

5.5 Bootstrap scenario: populating the “official” database
from a new library release

5.5.1 Situation

The release managers want to insert the collection of parameter sets for a new
library release into the “official” database, with a given tag – the tag is the
version of the current release.

5.5.2 Result

The updatedb program is used to perform this feat. Before running, the en-
vironment variables are set up to allow the process to talk to the “official”
database in writable mode. updatedb then is used to read a list of RCP scripts,
and to update the “official” database. It does this by making normal use of an
RCPManager object, using its extract method on each script to be updated
in the database.

8

5.6 Given package and object name, no script, no access
to “official” database; read access to “higgs” database

5.6.1 Situation

5.6.2 Result

No script found by FileFinder. RCPManager asks RCPDatabaseServices for
all RCPValue objects matching the incomplete (missing a version) RCPName.
RCPDatabaseServices responds with a collection of RCPValue objects. RCP-
Manager then selects the one with the most recent timestamp. Wrap and de-
liver.

The only way to control which version is returned is by setting the value of
the environment variable which is named in the file RCP DB NAMES FILE to the
version you want to retrieve; this only works if the “higgs” database has been
managed with controlled versions. If this database has been allowed to generate
version tags on its own, then the only possibility is to retrieve the most recent
version. Maybe this is what will convince users they want the option to specify
the version in RCPManager::extract(). Or, maybe not.

5.7 Given package, object name, and version name; local
script; same parameter set in writeable database; this
is a new version

5.7.1 Situation

Note that this is a completely hypothetical case, because the member function
of RCPManager that allowed the user to request a specific version of an RCP
object has been removed by request of DØ.

The user requests an RCP object by giving three strings. The first is the
name of a package, the second is the name of a parameter set associated with
that package, the third is its version string.

Because an explicit version string has been specified, the RCPManager does
not attempt to find a local script. Therefore, the existence of the local script is
irrelevant. This scenario then becomes identical to that of Section 5.2.

5.7.2 Result

See Section 5.2. Because the package name, object name, and version have all
been specified, but no such name is known to any database, the system is unable
to find a match – and an exception is thrown.

If the user wants to find the local script, then he must not specify a version.
In that case, we would have the same scenario as specified in either Section 5.3
or Section 5.4.

9

6 Random Questions I Can’t Yet Answer

• How does any scenario involving interaction with the “official” RCP
database through the web go? We still don’t have requirements in hand
for web interaction.

• What authority issues database names and database IDs? The current
working assumption is that all IDs for a given experiment will be held in
a master database at Fermilab.

• Need to specify a scenario that shows how a new name gets associated
with a parameter set. A few cases:

1. Release system is updating the official database piece. A new version
name is being assigned to specific parameter set.

2. Release system is updating the official database piece. An identical
parameter set is being given both a new package name and new object
name – two different developers happened, by accident, to create a
script containing identical name/value pairs.

3. User is updating his personal database, with version numbers being
issued by the database. A script is given a new package and/or object
name, but contains the same parameter set as specified under another
name in the database piece.

10

	Introduction
	RCP Database Objects
	Searching for Scripts
	Specifying parameter sets by RCPName
	Scenarios
	Given an RCPID
	Situation
	Result

	Given package and RCP names: no local scripts
	Situation
	Result

	Given package and RCP names: local script, identical parameter set in ``official'' database
	Situation
	Result

	Given package and RCP names: local script, no matching parameter set in any datbase, access to writable database
	Situation
	Result

	Bootstrap scenario: populating the ``official'' database from a new library release
	Situation
	Result

	Given package and object name, no script, no access to ``official'' database; read access to ``higgs'' database
	Situation
	Result

	Given package, object name, and version name; local script; same parameter set in writeable database; this is a new version
	Situation
	Result

	Random Questions I Can't Yet Answer

